IR Kuiper Belt Constraints
Preprint
- 20 November 1998
Abstract
We compute the temperature and IR signal of particles of radius $a$ and albedo $\alpha$ at heliocentric distance $R$, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of COBE DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance, $R$, particle radius, $a$, and particle albedo, $\alpha$. We then apply these results to a recently-developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40<R<50-90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the Solar System of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally we compare Kuiper belt IR spectra for various parameter values.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: