Two-Dimensional Radiation in Absorbing-Emitting Media Using the P-N Approximation

Abstract
Radiative energy transfer in a gray absorbing and emitting medium is considered in a two-dimensional rectangular enclosure using the P-N differential approximation. The two-dimensional moment of intensity partial differential equations (PDE’s) are combined to yield a single second-order PDE for the P-1 approximation and four coupled second-order PDE’s for the P-3 approximation. P-1 approximation results are obtained from separation of variables solutions, and P-3 results are obtained numerically using successive-over-relaxation methods. The P-N approximation results are compared with numerical Hottel zone results and with results from an approximation method developed by Modest. The studies show that the P-3 approximation can be used to predict emissive power distributions and heat transfer rates in two-dimensional media with opacities of unity or greater. The P-1 approximation is identical to the diffusion solution and is thus applicable only if the medium is optically dense.

This publication has 0 references indexed in Scilit: