Activation of a Cl- current by hypotonic volume increase in human endothelial cells.
Open Access
- 1 May 1994
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 103 (5) , 787-805
- https://doi.org/10.1085/jgp.103.5.787
Abstract
We have used whole-cell and perforated patches to study ionic currents induced by hypotonic extracellular solutions (HTS, 185 mOsm instead of 290 mOsm) in endothelial cells from human umbilical veins. These currents activated within 30-50 s after application of HTS, reached a maximum value after approximately 50-150 s and recovered completely after re-exposing the cells to normal osmolarity. They slowly inactivated at potentials positive to +50 mV. The same current was also activated by breaking into endothelial cells with a hypertonic pipette solution (377 mOsm instead of 290 mOsm). The reversal potential of these volume-induced currents using different extracellular and intracellular Cl- concentrations was always close to the Cl(-)-equilibrium potential. These currents are therefore mainly carried by Cl-. DIDS only weakly blocked the current (KI = 120 microM), while another Cl(-)-channel blocker, DCDPC (20 microM) was ineffective. We were unable to record single channel activity in cell-attached patches but we always observed an increased current variance during HTS. From the mean current-variance relation of the whole-cell current records, we determined a single channel conductance of 1.1 pS. The size and kinetics of the current were not correlated with the concomitant changes in intracellular calcium. Furthermore, the currents could still be activated in the presence of 10 mmol/liter intracellular EGTA and are thus Ca2+ independent. A similar current was also activated with iso-osmotic pipette solutions containing 300 mumol/liter GTP gamma S. Neomycin (1 mmol/liter), a blocker of PLC, did not prevent activation of this current. TPA (4 mumol/liter) was also ineffective in modulation of this current. The HTS-induced current was completely blocked by 10 mumol/liter pBPB, a PLA2 inhibitor. NDGA (4 mumol/liter) and indomethacin (5 mumol/liter), blockers of lipoxygenase and cyclo-oxygenase respectively, did however not affect the current induced by hypotonic solutions. The effects of arachidonic acid (10 mumol/liter) were variable. In 12 out of 40 cells it either directly activated a Cl- current or potentiated the current activated by HTS. The membrane current was decreased at all potentials in 18 cells, and was not affected in 10 cells. The HTS-induced currents may therefore be modulated by cleavage products of PLA2, but not by messengers downstream of arachidonic acid. Loading the cells with a segment of the heat stable protein kinase A inhibitor PKI (5-24) did not prevent activation of the HTS-induced current.(ABSTRACT TRUNCATED AT 400 WORDS)Keywords
This publication has 32 references indexed in Scilit:
- Chloride channels activated by osmotic stress in T lymphocytes.The Journal of general physiology, 1993
- Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells.Journal of Biological Chemistry, 1993
- cAMP-dependent phosphorylation modulates voltage gating in an endothelial Cl- channel.1993
- Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolinPflügers Archiv - European Journal of Physiology, 1993
- Expression and functional activity of P-glycoprotein in cultured cerebral capillary endothelial cells.1992
- A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid.The Journal of general physiology, 1992
- Shear stress‐induced calcium transients in endothelial cells from human umbilical cord veins.The Journal of Physiology, 1992
- Calcium signaling in cell volume regulationPhysiological Reviews, 1992
- Volume‐regulatory Cl‐ channel currents in cultured human epithelial cells.The Journal of Physiology, 1992
- Culture of Human Endothelial Cells Derived from Umbilical Veins. IDENTIFICATION BY MORPHOLOGIC AND IMMUNOLOGIC CRITERIAJournal of Clinical Investigation, 1973