A natural orbital functional for the many-electron problem

Abstract
The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals. In the former approach the unknown part of the functional contains both a kinetic and a potential contribution whereas in the latter approach it contains only a potential energy and consequently has simpler scaling properties. We present an approximate, simple and parameter-free functional of the natural orbitals, based solely on scaling arguments and the near satisfaction of a sum rule. Our tests on atoms show that it yields on average more accurate energies and charge densities than the Hartree Fock method, the local density approximation and the generalized gradient approximations.

This publication has 0 references indexed in Scilit: