Discriminant Analysis of Physiological Differences Between Good and Elite Distance Runners

Abstract
The purpose of this investigation was to evaluate and quantify physiological differences among groups of distance runners. The subjects included 20 elite distance runners (8 marathon, 12 middle-long distance) and 8 good runners. Working capacity and cardiorespiratory function were determined by submaximal and maximal treadmill tests, and body composition by hydrostatic weighing. The variables studied were maximum oxygen uptake ([Vdot]O2 max), [Vdot]O2 submax, lactic acid submax, lean body weight, and fat weight. MANOVA showed that the good runners differed from the elite runners (p < 0.01) and the elite marathon runners differed from the elite middle-long distance runners (p < 0.05). Discriminant analysis showed that both functions were significant. The first was a general physiological efficiency factor that separated the good and elite runners. The second separated the elite marathon and middle-long distance groups. The second function showed that the marathon runners had lower lactic acid submax values. The middle-long distance runners had higher [Vdot]O2 max values. Classification analysis was used to evaluate the accuracy of the discriminant analysis; 80% of the elite runners were correctly classified as marathon or middle-long distance runners. The discriminant functions were used to develop a multivariate scaling model for evaluating distance runners. Two premier runners, one marathoner (F. Shorter) and one middle-long distance runner (S. Prefontaine), were found to be at the extremes of the scale. The data showed that the discriminant functions provided a valid model for evaluating differences among elite distance runners.

This publication has 13 references indexed in Scilit: