Multi-peak bound states for nonlinear Schrödinger equations
- 1 April 1998
- journal article
- Published by European Mathematical Society - EMS - Publishing House GmbH in Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Vol. 15 (2) , 127-149
- https://doi.org/10.1016/s0294-1449(97)89296-7
Abstract
In this paper we consider the study of standing wave solutions for a nonlinear Schrödinger equation. This problem reduces to that of finding nonnegative solutions of \begin{matrix} ɛ^{2}\Delta u - V\left(x\right)u + f\left(u\right) = 0 & \text{in} & \Omega , \\ \end{matrix} with finite energy. Here ɛ is a small parameter, ω is a smooth, possibly unbounded domain, f is an appropriate superlinear function, and V is a positive potential, bounded away from zero. It is the purpose of this article to obtain multi-peak solutions in the “multiple well case”. We find solutions exhibiting concentration at any prescribed finite set of local minima, possibly degenerate, of the potential. The proof relies on variational arguments, where a penalization-type method is developed for the identification of the desired solutions. Résumé: Dans cet article, on considère l’étude des solutions de ondes permanentes d’une équation de Schrödinger nonlinéaire. Ce problème se réduit à la recherche de solutions non négatives de \begin{matrix} ɛ^{2}\Delta u - V\left(x\right)u + f\left(u\right) = 0 & \text{dans} & \Omega , \\ \end{matrix} avec une énergie finie. Ici ɛ est un paramètre petit, ω est un domaine lisse qui peut être non borné, f est une fonction superlinéaire appropriée et V est un potentiel positif borné hors de zéro. L’objectif de cet article consiste à obtenir des solutions à pics multiples dans le cas de puits multiples. Nous trouvons des solutions qui montrent une concentration pour tout ensemble choisi fini de minima locaux du potentiel, qui peuvent être dégénérés. La démonstration se base sur des arguments variationnels, où une méthode de pénalisation est développée pour identifier les solutions cherchées.This publication has 9 references indexed in Scilit:
- Local mountain passes for semilinear elliptic problems in unbounded domainsCalculus of Variations and Partial Differential Equations, 1996
- On concentration of positive bound states of nonlinear Schrödinger equationsCommunications in Mathematical Physics, 1993
- On a class of nonlinear Schr dinger equationsZeitschrift für angewandte Mathematik und Physik, 1992
- Uniqueness of the ground state solutions of △u+f(u)=0 in Rn, n≥3Communications in Partial Differential Equations, 1991
- Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulusDifferential and Integral Equations, 1991
- On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potentialCommunications in Mathematical Physics, 1990
- Correction to existence of semiclassical bound states of nonlinear scierodinger equations with potentials of the, class (V)aCommunications in Partial Differential Equations, 1989
- Existence of Semiclassical Bound States of Nonlinear Schrödinger Equations with Potentials of the Class (V)aCommunications in Partial Differential Equations, 1988
- Nonspreading wave packets for the cubic Schrödinger equation with a bounded potentialJournal of Functional Analysis, 1986