Multimillion-atom molecular dynamics simulation of atomic level stresses in Si(111)/Si3N4(0001) nanopixels

Abstract
Ten million atom multiresolution molecular-dynamics simulations are performed on parallel computers to determine atomic-level stress distributions in a 54 nm nanopixel on a 0.1 μm silicon substrate. Effects of surfaces, edges, and lattice mismatch at the Si(111)/Si3N4(0001) interface on the stress distributions are investigated. Stresses are found to be highly inhomogeneous in the nanopixel. The top surface of silicon nitride has a compressive stress of +3 GPa and the stress is tensile, −1 GPa, in silicon below the interface.