Differential Regulation of Sinusoidal and Canalicular Hepatic Drug Transporter Expression by Xenobiotics Activating Drug-Sensing Receptors in Primary Human Hepatocytes
- 1 October 2006
- journal article
- Published by Elsevier in Drug Metabolism and Disposition
- Vol. 34 (10) , 1756-1763
- https://doi.org/10.1124/dmd.106.010033
Abstract
Sinusoidal and canalicular hepatic drug transporters constitute key factors involved in drug elimination from liver. Regulation of their expression via activation of xenosensors, such as aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and nuclear factor E2-related factor 2 (Nrf2), remains incompletely characterized. The present study was therefore designed to carefully analyze expression of major drug transporters in primary human hepatocytes exposed to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) (an AhR activator), rifampicin (RIF) (a PXR activator), phenobarbital (PB) (a CAR activator), and oltipraz (OPZ) (a Nrf2 activator), using mainly reverse transcription-real time polymerase chain reaction assays. With a threshold corresponding to a 1.5-fold factor change in mRNA levels, observed in at least three of seven independent human hepatocyte cultures, efflux transporters such as MDR1, MRP2 and BCRP were up-regulated by PB, RIF, and OPZ, whereas MRP3 was induced by OPZ and RIF. MDR1 and BCRP expression was also increased by TCDD- and RIF-augmented mRNA levels of the influx transporter OATP-C. Bile acid transporters, i.e., bile salt export pump and Na+-taurocholate cotransporting polypeptide, and the sinusoidal transporter, OAT2, were down-regulated by all the tested chemicals. Influx transporters such as OCT1, OATP-B, and OATP8 were repressed by PB and TCDD. PB also decreased MRP6 expression, whereas mRNA levels of OCT1 and OATP8 were down-regulated by RIF and OPZ, respectively. Taken together, these data establish a complex pattern of transporter regulation by xenobiotics in human hepatocytes, in addition to interindividual variability in responsiveness. This may deserve further attention with respect to drug-drug interactions and adverse effects of hepatic drugs.This publication has 39 references indexed in Scilit:
- THE ROLE OF PREGNANE X RECEPTOR IN 2-ACETYLAMINOFLUORENE-MEDIATED INDUCTION OF DRUG TRANSPORT AND -METABOLIZING ENZYMES IN MICEDrug Metabolism and Disposition, 2006
- REGULATION OF MOUSE ORGANIC ANION-TRANSPORTING POLYPEPTIDES (OATPS) IN LIVER BY PROTOTYPICAL MICROSOMAL ENZYME INDUCERS THAT ACTIVATE DISTINCT TRANSCRIPTION FACTOR PATHWAYSDrug Metabolism and Disposition, 2005
- Identification of BCRP as transporter of benzo[ a ]pyrene conjugates metabolically formed in Caco-2 cells and its induction by Ah-receptor agonistsCarcinogenesis: Integrative Cancer Research, 2005
- Physiological, pharmacological and clinical features of the multidrug resistance protein 2Biomedicine & Pharmacotherapy, 2005
- A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expressionBiological Chemistry, 2005
- Coordinate Transcriptional Regulation of Transport and MetabolismPublished by Elsevier ,2005
- The Complexities of Hepatic Drug Transport: Current Knowledge and Emerging ConceptsPharmaceutical Research, 2004
- INDUCTION OF MULTIDRUG RESISTANCE PROTEIN 3 (MRP3) IN VIVO IS INDEPENDENT OF CONSTITUTIVE ANDROSTANE RECEPTORDrug Metabolism and Disposition, 2003
- Differential regulation of multidrug resistance-associated protein 2 (MRP2) and cytochromes P450 2B1/2 and 3A1/2 in phenobarbital-treated hepatocytesBiochemical Pharmacology, 2002
- Nuclear Receptor Response Elements Mediate Induction of Intestinal MDR1 by RifampinJournal of Biological Chemistry, 2001