Algebraic approach to spatial reasoning

Abstract
A simple, exemplary system is described that performs reasoning about the spatial relationships between members of a set of spatial objects. The main problem of interest is to make sound and complete inferences about the set of all spatial relationships that hold between the objects, given prior information about a subset of the relationships. The spatial inferences are formalized within the framework of relation algebra and procedurally implemented in terms of constraint satisfaction procedures. Although the approach is general, the particular example employs a new ‘complete’ set of topological relationships that have been published elsewhere. In particular, a relation algebra for these topological relations is developed and a computational implementation of this algebra is described. Systems with such reasoning capabilities have many applications in geographical analysis and could be usefully incorporated into geographical information systems and related systems.

This publication has 10 references indexed in Scilit: