Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae.
Open Access
- 1 March 1988
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 8 (3) , 1179-1185
- https://doi.org/10.1128/mcb.8.3.1179
Abstract
The RAD6 gene of Saccharomyces cerevisiae, which is required for normal tolerance of DNA damage and for sporulation, encodes a 172-residue protein whose 23 carboxyl-terminal residues are almost all acidic. We show that this polyacidic sequence appends to RAD6 protein as a polyanionic tail and that its function in vivo does not require stoichiometry of length. RAD6 protein was purified to near homogeneity from a yeast strain carrying a RAD6 overproducing plasmid. Approximately the first 150 residues of RAD6 protein composed a structural domain that was resistant to proteinase K and had a Stokes radius typical of a globular protein of its calculated mass. The carboxyl-terminal polyacidic sequence was sensitive to proteinase K, and it endowed RAD6 protein with an aberrantly large Stokes radius that indicates an asymmetric shape. We deduce that RAD6 protein is monomeric and comprises a globular domain with a freely extending polyacidic tail. We tested the phenotypic effects of partial or complete deletion of the polyacidic sequence, demonstrating the presence of the shortened proteins in the cell by using antibody to RAD6 protein. Removal of the entire polyacidic sequence severely reduced sporulation but only slightly affected survival after UV irradiation or UV-induced mutagenesis. Strains with deletions of all but the first 4 or 15 residues of the polyacidic sequence were phenotypically almost wild type or wild type, respectively. We conclude that the intrinsic activity of RAD6 protein resides in the globular domain, that the polyacidic sequence has a stimulatory or modifying role evident primarily in sporulation, and that only a short section apparently functions as effectively as the entire polyacidic sequence.This publication has 32 references indexed in Scilit:
- Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductasesPublished by Elsevier ,2003
- The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzymeNature, 1987
- A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistanceMolecular Genetics and Genomics, 1984
- [12] One-step gene disruption in yeastPublished by Elsevier ,1983
- A new approach (cyano-transfer) for cyanogen bromide activation of Sepharose at neutral pH, which yields activated resins, free of interfering nitrogen derivativesBiochemical and Biophysical Research Communications, 1982
- An acidic protein which assembles nucleosomes in vitro is the most abundant protein in Xenopus oocyte nucleiJournal of Molecular Biology, 1980
- Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proceedings of the National Academy of Sciences, 1979
- Specificity and frequency of ultraviolet-induced reversion of an iso-1-cytochrome c ochre mutant in radiation-sensitive strains of yeastJournal of Molecular Biology, 1974
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeastMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1968