Avalanche noise characteristics of thin GaAs structures with distributed carrier generation [APDs]

Abstract
It is known that both pure electron and pure hole injection into thin GaAs multiplication regions gives rise to avalanche multiplication with noise lower than predicted by the local noise model. In this paper, it is shown that the noise from multiplication initiated by carriers generated throughout a 0.1 /spl mu/m avalanche region is also lower than predicted by the local model but higher than that obtained with pure injection of either carrier type. This behavior is due to the effects of nonlocal ionization brought about by the dead space; the minimum distance a carrier has to travel in the electric field to initiate an ionization event.