Postreceptor events involved in the up-regulation of beta-adrenergic receptor mediated lipolysis by testosterone in rat white adipocytes.

Abstract
In the previous studies we have shown that testosterone increases lipolytic responsiveness to catecholamines in rat white adipocytes, and that is associated with an up-regulation of beta-adrenergic receptor density. However, the postreceptor events involved in the testosterone induced enhancement of beta-adrenergic receptor activated lipolysis in these cells have not been adequately studied, and were therefore investigated in the present study. Male Sprague Dawley rats were divided into three groups: control, castrated, and castrated treated with testosterone. The beta-adrenergic receptor-mediated cAMP accumulation, measured with RIA after isoproterenol (a beta-adrenergic agonist) stimulation was decreased in castrated rats, and reversed by testosterone treatment, suggesting a testosterone effect at or proximal to adenylate cyclase. However, no differences between the groups were found in abundance of G alpha protein messenger RNAs (G alpha s, G alpha i-1, and G alpha i-2) as analyzed by Northern blot and a solution hybridization RNase protection assay, or in G protein mass measured with a quantitative enzyme-linked immunosorbent assay in fat cell membrane preparation. Lipolysis stimulated by N6-monobutyryl-cAMP was reduced in castrated rats and recovered by testosterone treatment, suggesting that components distal to the adenylate cyclase, i.e. protein kinase A (PKA) and/or hormone sensitive lipase (HSL) also are involved in testosterone regulation of lipolysis. In conclusion, these and previous results suggest that the testosterone-induced increase in lipolytic response to catecholamines in rat white adipocytes is mediated through several events including an increased beta-adrenergic receptor density, probably an increased adenylate cyclase activity and an increased protein kinase A/hormone sensitive lipase activity at the postreceptor level with apparent absence of effect on the expression of G-proteins.

This publication has 0 references indexed in Scilit: