Abstract
Theory alternative to the vortex lattice melting theories is advertised. The vortex lattice melting theories are science fiction cond-mat/9811051 because the Abrikosov state is not the vortex lattice with crystalline long-range order. Since the fluctuation correction to the Abrikosov solution is infinite in the thermodynamic limit (K.Maki and H.Takayama, 1972) any fluctuation theory of the mixed state should consider a superconductor with finite sizes. Such nonperturbative theory for the easiest case of two-dimensional superconductor in the lowest Landau level approximation is presented in this work. The thermodynamic averages of the spatial average order parameter and of the Abrikosov parameter $\beta_{a}$ are calculated. It is shown that the position H_{c4} of the transition into the Abrikosov state (i.e. in the mixed state with long-range phase coherence) depends strongly on sizes of two-dimensional superconductor. Fluctuations eliminate the Abrikosov vortex state in a wide region of the mixed state of thin films with real sizes and without pinning disorders, i.e. H_{c4} << H_{c2}. The latter has experimental corroboration in Phys.Rev.Lett. 75, 2586 (1995).

This publication has 0 references indexed in Scilit: