In vivo contractile properties of fatigued diaphragm

Abstract
The effects of fatigue on diaphragmatic contractility in vivo are unknown. In this study we used sonomicrometry to examine the velocity of shortening and lengthening and the amount of shortening in the fresh and fatigued canine hemidiaphragm (8 dogs) including the force generated. Fatigue was produced by epiphrenic stimulation of the left phrenic nerve; the right hemidiaphragm acted as the control. We found that 1) hemidiaphragmatic fatigue caused an increase in frequency with reduced tidal volume; 2) fatigue resulted in a near complete cessation of tidal shortening during spontaneous breathing; 3) there was an initial decrease in central activation (electromyogram) to the fatigued hemidiaphragm, an indication of central fatigue; 4) force-frequency curves showed a considerable and prolonged loss of the amount of shortening, velocity, and force generated by the fatigued hemidiaphragm during supramaximal stimulation, an indication of peripheral fatigue; and 5) during spontaneous breathing in the fatigued hemidiaphragm, tidal shortening remained reduced for up to 3 h, whereas in the right right hemidiaphragm tidal shortening and electromyographic activity did not change. We conclude that fatigue of a hemidiaphragm alters the spontaneous breathing pattern and produces profound modifications in its contractile properties without altering contralateral hemidiaphragmatic performance.