24-Hydroxycholesterol, the main cholesterol elimination product of the brain is increased in serum of Alzheimer patients. This oxysterol behaves neurotoxic towards the human neuroblastoma cell line, SH-SY5Y. Here we demonstrate, that 24-hydroxycholesterol-induced neurotoxicity in differentiated SH-SY5Y cells was due to apoptosis, as indicated by DNA-fragmentation, caspase-3 activation and a decrease of the mitochondrial membrane potential. Free radicals were generated, resulting in the death of 75% of the cells within 48 h; neurotoxicity in differentiated SH-SY5Y cells was partially prevented by physiological concentrations of vitamin E (50–100 μM) in that 75% of the cells survived. Physiological concentrations of estradiol-17β (1–100 nM) elicited a protective effect in differentiated cells, which was not significant; however, in undifferentiated cells a significant protection was noted by this steroid hormone. Vitamin C and melatonin did not prevent 24-hydroxycholesterol-induced neurotoxicity. These in vitro data support the in vivo observed beneficial effects reported as circumstantial evidence of vitamin E and estradiol-17β treatment in the prevention and therapy of neurodegenerative disease.