Status of an experiment aimed at laboratory searches for the electron-antineutrino magnetic moment at a level of μ ν ≤3±10− μ B

Abstract
An experiment aimed at directly detecting antineutrino-electron scattering by using a 40-MCi tritium β-active source will make it possible to lower the present-day laboratory limit on the neutrino magnetic moment by two orders of magnitude. The experiment brings together novel unique technologies in studying rare processes of neutrino-electron scattering: (i) an artificial source of antineutrinos from tritium decay of 40-MCi activity with the antineutrino flux density of about 6×1014 cm−2 s−1 and (ii) new types of detectors capable of detecting electrons of energy down to about 10 eV, namely, a silicon cryogenic detector based on the ionization-into-heat conversion effect and a high-pure germanium detector with an internal signal amplification in the electric field. A compact installation located at a specially equipped underground laboratory (≤100 mwe) will provide favorable background conditions for running the experiment. With a background level of about 0.1 event/(kg keV d) and detector assembly masses of 3 and 5 kg for the silicon and germanium ones, respectively, a limit of μ ν ≤3±10 μ B on the electron-antineutrino magnetic moment will be obtained within 1 to 2 years of data acquisition. The status of the experiment and the state of the art are presented.
All Related Versions

This publication has 11 references indexed in Scilit: