Synthesis, Structural Features, Absorption Spectra, Redox Behaviour and Luminescence Properties of Ruthenium(II) Rack‐Type Dinuclear Complexes with Ditopic, Hydrazone‐Based Ligands
- 13 June 2005
- journal article
- Published by Wiley in Chemistry – A European Journal
- Vol. 11 (13) , 3997-4009
- https://doi.org/10.1002/chem.200401261
Abstract
The isomeric bis(tridentate) hydrazone ligand strands 1 a–c react with [Ru(terpy)Cl3] (terpy=2,2′:6′,2′′‐terpyridine) to give dinuclear rack‐type compounds 2 a–c, which were characterised by several techniques, including X‐ray crystallography and NMR methods. The absorption spectra, redox behaviour and luminescence properties (both in fluid solution at room temperature and in rigid matrix at 77 K) of the ligand strands 1 a–c and of the metal complexes 2 a–c have been studied. Compounds 1 a–c exhibit absorption spectra dominated by intense π–π* bands, which, in the case of 1 b and 1 c, extend within the visible region, while the absorption spectra of the rack‐type complexes 2 a–c show intense bands both the in the UV region, due to spin‐allowed ligand‐centred (LC) transitions, and in the visible, due to spin‐allowed metal‐to‐ligand charge‐transfer (MLCT) transitions. The energy position of these bands strongly depends on the ligand strand: in the case of 2 a, the lowest energy MLCT band is around 470 nm, while in 2 b and 2 c, it lies beyond 600 nm. Ligands 1 a–c undergo oxidation processes that involve orbitals based mainly on the CH3NN fragments. The complexes 2 a–c undergo reversible metal‐centred oxidation, while reductions involve the hydrazone‐based ligands: in 2 b and 2 c, the bridging ligand is reduced twice and in 2 a once before reduction of the peripheral terpy ligands takes place. Ligands 1 a–c exhibit luminescence from the lowest‐lying 1π–π* level. Only for complex 2 a does emission occur; this may be attributed to a 3MLCT state involving the bridging ligand. Taken together, the results clearly indicate that the structural variations introduced translate into interesting differences in the spectroscopic, luminescence and redox properties of the ligand strands as well as of the rack‐type metal complexes. La réaction des ligands bidentates isomères de type bishydrazone 1 a–c avec [Ru(terpy)Cl3], conduit aux complexes dinucléaires 2 a–c. Les études radiocristallographiques par diffractionole rayons X montrent que les complexes 2 a,b contenant le noyau pyrimidine 4,6‐disubstitué comme unité centrale présentent une courbure, alors que le complexe 2 c, qui a pour unité centrale la pyrazine 2,5‐disubstituée, est à peu près linéaire. Quand l'unité centrale est dérivée d'un dialdéhyde, les complexes sont verts (2 b,c; absorption à 600 nm), alors que lorsqu'elle est dérivée d'une bishydrazine, le complexe correspondant 2 a est brun‐rouge (absorption à 470 nm). Ce dernier est le seul complexe à présenter une émission, alors que les ligands 1 a–c sont tous luminescents. D'un point de vue électrochimique, les ligands 1 a–c participent à des processus irréversibles d'oxydation. Les complexes 2 a–c subissent des oxydations réversibles ou quasi‐réversibles et présentent plusieurs réductions réversibles dans le domaine de potentiel de −2.00 à +2.00 V/ECS. Ces résultats mettent en lumière les modifications des propriétés structurales et physico‐chimiques produites dans les complexes métalliques par le remplacement d'un noyau pyrimidine (2 a,b) par un noyau pyrazine (2 c) ou par le changement de position de la fonction hydrazone (2 a et 2 b,c). Ils permettent d'envisager la synthèse de complexes de plus grande taille à sites multiples, présentant une courbure/linéarité et des propriétés contrôlables par la nature du ligand.Keywords
This publication has 44 references indexed in Scilit:
- New chiral pyrazine-based ligands for self-assembly reactionsJournal of the Chemical Society, Perkin Transactions 1, 2002
- Redox Characteristics and Anion Association Behaviour of Stereoisomeric Forms of Mono- and Oligonuclear Metal Complexes Using High Pressure ElectrochemistryEuropean Journal of Inorganic Chemistry, 2000
- Ruthenium(II) and Osmium(II) Bis(terpyridine) Complexes in Covalently-Linked Multicomponent Systems: Synthesis, Electrochemical Behavior, Absorption Spectra, and Photochemical and Photophysical PropertiesChemical Reviews, 1994
- Absorption spectra and luminescence properties of a series of pyridine carboxaldehyde phenylhydrazone ligands and their palladium(II) complexesJournal of Photochemistry and Photobiology A: Chemistry, 1990
- What determines the comproportionation constant in molecule-bridged mixed-valence complexes? Evidence for the crucial role of the ligand LUMO in four ruthenium(II)ruthenium(III) dimersInorganic Chemistry, 1988
- Poly(DMI-1, 2-Diazinediylethene-l, 2-Diols)Journal of Macromolecular Science: Part A - Chemistry, 1987
- Synthesis of 2,6-Diformyl-3-hydroxypyridine Bis[N-methyl-N-(2′-pyridyl) hydrazone]: A PentadentateN,N,N,N,NLigand for the Preparation of Chelating ResinsSynthesis, 1987
- Photochemistry of metal coordination complexes: metal to ligand charge transfer excited statesPure and Applied Chemistry, 1986
- Metal to metal interactions in weakly coupled mixed-valence complexes based on ruthenium amminesInorganic Chemistry, 1981
- Einwirkung von 2.5‐Dimethylpyrazin auf AldehydeEuropean Journal of Inorganic Chemistry, 1905