Atoms in molecules interpretation of the anomeric effect in the O-C-O unit

Abstract
The conformational preferences of two model compounds for the OCH2O anomeric unit: methanediol and dimethoxymethane analyzed within the framework of the QTAIM theory provide a new interpretation of the anomeric effect. The characteristic stabilization of the gauche conformers of these compounds is accompanied by a progressive reduction of the electron population of the hydrogens of the central methylene as the number of their gauche interactions to lone pairs rises. The electron population removed from these atoms during the conformational change is gained in the gauche conformers by atoms of larger atomic number, which results in a more negative molecular energy. Also, the variations displayed by atomic populations and the QTAIM delocalization indexes are not keeping in line with the hyperconjugative model of the anomeric effect. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007