Prevention of the Nigrostriatal Toxicity of 1‐Methyl‐4‐Phenyl‐1,2,3,6‐Tetrahydropyridine by Inhibitors of 3,4‐Dihydroxyphenylethylamine Transport

Abstract
The 3,4-dihydroxyphenylethylamine (DA, dopamine) uptake inhibitors GBR 13,069, amfonelic acid, WIN-35,065-2, WIN-35,428, nomifensine, mazindol, cocaine, McN-5908, McN-5847, and McN-5292 were effective in preventing [3H]DA and [3H]l-methyl-4-phenylpyridinium (MPP+) uptake in rat and mouse neostriatal tissue slices. These DA uptake inhibitors also were effective in attenuating the MPP+-induced release of [3H]DA in vitro. 1-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) administration to mice (6 ± 25 mg/kg i.p.) resulted in a large (70–80%) decrement in neostriatal DA. WIN-35,428 (5 mg/kg), GBR 13,069 (10 mg/kg), McN-5292 (5 mg/kg), McN-5908 (2 mg/ kg), and amfonelic acid (2 mg/kg), when administered intraperitoneally 30 min prior to each MPTP injection, fully protected against MPTP-induced neostriatal damage. Other DA uptake inhibitors showed partial protection in vivo at the doses selected. Desmethylimipramine did not prevent [3H]MPP+ uptake or MPP+-induced release of [3H]DA in vitro, and did not protect against MPTP neurotoxicity in vivo. These results support the hypothesis put forth previously by others that the active uptake of MPP+ by dopaminergic neurons is necessary for toxicity.

This publication has 29 references indexed in Scilit: