Abstract
Natural abundance Fourier transform 13C nuclear magnetic resonance (13C NMR) were obtained for enzyme solubilized collagen at 1 degrees intervals through the transition region. The transition of collagen molecules from the rigid triple helical state to single-stranded, random-coil state is accompanied by a change from broadened carbon resonances unobservable under high-resolution conditions to narrow line spectra. Thus distinction can be made between helical and random-coil states of individual residues. The transition is monophasic, as determined by examination of 14 different carbon resonances, and the entire structure is found to melt cooperatively over a temperature interval of 5 +/- 1 degrees. All the residues seem to be involved in the unfolding process concurrently. The transition was also studied by examining the changes in the circular dichroism spectrum brought about by heating. The experiments corroborated the observation that the transition proceeded cooperatively over a temperature interval of 4 degrees. Enzyme soluble collagen is seen to melt less cooperatively than native collagen. The enthalpy change was determined by assuming an equilibrium between three random coil gelatin chains and tropocollogen molecules. From the enthalpy, the average length of the tripeptide sequences (70-85) involved in the transition can be estimated. The shortening of the cooperative unit could arise as a result of some alteration of the native conformation through proctase treatment.