The Reliability of the Stochastic Active Rotator
- 1 April 2002
- journal article
- Published by MIT Press in Neural Computation
- Vol. 14 (4) , 781-792
- https://doi.org/10.1162/089976602317318956
Abstract
The reliability of firing of excitable-oscillating systems is studied through the response of the active rotator, a neuronal model evolving on the unit circle, to white gaussian noise. A stochastic return map is introduced that captures the behavior of the model. This map has two fixed points: one stable and the other unstable. Iterates of all initial conditions except the unstable point tend to the stable fixed point for almost all input realizations. This means that to a given input realization, there corresponds a unique asymptotic response. In this way, repetitive stimulation with the same segment of noise realization evokes, after possibly a transient time, the same response in the active rotator. In other words, this model responds reliably to such inputs. It is argued that this results from the nonuniform motion of the active rotator around the unit circle and that similar results hold for other neuronal models whose dynamics can be approximated by phase dynamics similar to the active rotator.Keywords
This publication has 29 references indexed in Scilit:
- Noise in neurons is message dependentProceedings of the National Academy of Sciences, 2000
- Resonance Effect for Neural Spike Time ReliabilityJournal of Neurophysiology, 1998
- Dynamics of Membrane Excitability Determine Interspike Interval Variability: A Link Between Spike Generation Mechanisms and Cortical Spike Train StatisticsNeural Computation, 1998
- Encoding of Visual Motion Information and Reliability in Spiking and Graded Potential NeuronsJournal of Neuroscience, 1997
- The structure and precision of retinal spike trainsProceedings of the National Academy of Sciences, 1997
- Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamicsPhysical Review E, 1996
- Stochastic resonance without tuningNature, 1995
- On stochastic perturbations of iterations of circle mapsPhysica D: Nonlinear Phenomena, 1993
- Extremal exponents of random dynamical systems do not vanishJournal of Dynamics and Differential Equations, 1990
- Spike initiation by transmembrane current: a white‐noise analysis.The Journal of Physiology, 1976