Protein Synthesis in Embryos of Dormant and Germinating Agrostemma githago L. seeds

Abstract
The time course of protein synthesis in embryos of dormant and afterripened Agrostemma githago seeds was studied. In embryos of afterripened geminating seeds, protein synthesis increased in three successive stages: (a) concurrent with swelling; (b) during the lag phase between the completion of water uptake and the onset of growth; and (c) immediately after protrusion through the seed coat. Embryos of dormant seeds showed the first increase but not the second unless dormancy was broken by imbibition at 4°C. This indicates that dormancy affects processes prior to the onset of growth. The third increase was largely due to higher oxygen availability after the rupture of the seed coat and not to actual growth. It could also be elicited in dormant embryos by isolating them from the seeds. Electrophoretic analysis of the newly synthesized proteins demonstrated that the patterns of dormant and afterripened embryos became significantly different in both axes and cotyledons only just prior to the onset of axis elongation. Thereafter, the differences became larger. When afterripened or dormant seeds were transferred from a low, germination-permitting to a high, germination-inhibiting temperature, the seeds germinated at the high temperature if they had completed the lag phase to a sufficient extent at the low temperature. This shows that the processes during the lag phase were inhibited by the high temperature while the onset of growth was not affected.