Abstract
In this study the degree p = 1 is assigned to the ordinary Fourier transform. The fractional Fourier transform, for example with degree P = 1/2, performs an ordinary Fourier transform if applied twice in a row. Ozaktas and Mendlovic [ “ Fourier transforms of fractional order and their optical implementation,” Opt. Commun. (to be published)] introduced the fractional Fourier transform into optics on the basis of the fact that a piece of graded-index (GRIN) fiber of proper length will perform a Fourier transform. Cutting that piece of GRIN fiber into shorter pieces corresponds to splitting the ordinary Fourier transform into fractional transforms. I approach the subject of fractional Fourier transforms in two other ways. First, I point out the algorithmic isomorphism among image rotation, rotation of the Wigner distribution function, and fractional Fourier transforming. Second, I propose two optical setups that are able to perform a fractional Fourier transform.

This publication has 9 references indexed in Scilit: