Top Cited Papers
Open Access
Abstract
In order to investigate the effect of tropical cyclone–ocean interaction on the intensity of observed hurricanes, the GFDL movable triply nested mesh hurricane model was coupled with a high-resolution version of the Princeton Ocean Model. The ocean model had 1/6° uniform resolution, which matched the horizontal resolution of the hurricane model in its innermost grid. Experiments were run with and without inclusion of the coupling for two cases of Hurricane Opal (1995) and one case of Hurricane Gilbert (1988) in the Gulf of Mexico and two cases each of Hurricanes Felix (1995) and Fran (1996) in the western Atlantic. The results confirmed the conclusions suggested by the earlier idealized studies that the cooling of the sea surface induced by the tropical cyclone will have a significant impact on the intensity of observed storms, particularly for slow moving storms where the SST decrease is greater. In each of the seven forecasts, the ocean coupling led to substantial improvements in the prediction... Abstract In order to investigate the effect of tropical cyclone–ocean interaction on the intensity of observed hurricanes, the GFDL movable triply nested mesh hurricane model was coupled with a high-resolution version of the Princeton Ocean Model. The ocean model had 1/6° uniform resolution, which matched the horizontal resolution of the hurricane model in its innermost grid. Experiments were run with and without inclusion of the coupling for two cases of Hurricane Opal (1995) and one case of Hurricane Gilbert (1988) in the Gulf of Mexico and two cases each of Hurricanes Felix (1995) and Fran (1996) in the western Atlantic. The results confirmed the conclusions suggested by the earlier idealized studies that the cooling of the sea surface induced by the tropical cyclone will have a significant impact on the intensity of observed storms, particularly for slow moving storms where the SST decrease is greater. In each of the seven forecasts, the ocean coupling led to substantial improvements in the prediction...