Rage: A Novel Cellular Receptor for Advanced Glycation End Products

Abstract
Exposure of proteins to reducing sugars results in nonenzymatic glycation with the ultimate formation of advanced glycation end products (AGEs). One means through which AGEs modulate cellular functions is through binding to specific cell surface acceptor molecules. The receptor for AGEs (RAGE) is such a receptor and is a newly identified member of the immunoglobulin superfamily expressed on endothelial cells (ECs), mononuclear phagocytes (MPs), and vascular smooth muscle cells (SMCs) in both vivo and in vitro. Binding of AGEs to RAGE results in induction of cellular oxidant stress, as exemplified by the generation of thiobarbituric acid-reactive substances, expression of heme oxygenase type I, and activation of the transcription factor NF-kB, with consequences for a range of cellular functions. AGEs on the surface of diabetic red cells enhance binding to endothelial RAGE and result in enhanced oxidant stress in the vessel wall. By using reagents to selectively block access to RAGE, the role of this receptor in AGE-mediated perturbation of cellular properties can be dissected in detail.

This publication has 0 references indexed in Scilit: