Effects of temperature and salinity on growth and uptake of 65Zn and 137Cs for six marine algae

Abstract
Population growth and concentration factors for 65Zn and 137Cs have been measured for Achnanthes brevipes Agardh, Carteria sp. Diesing, Chlamydomonas sp. Ehrenberg, Dunaliella salina Teod., Nannochloris atotnus Butcher, and Phaeodactylum tricornutum Lewin subjected to factorial combinations of eight temperatures (6–40 °C) and ten salinities (3.5–44.0 p.p.t.). Regression coefficients were calculated for polynomial models describing response surfaces for growth and radionuclide concentration. Salinity was more important than temperature in describing population growth for Carteria, Dunaliella, Nannochloris and Phaeodactylum. No independent variable was consistently of primary importance in describing 137Cs concentration factors, while temperature accounted for more variation in 65Zn concentration factors than salinity or population growth in all algae except Dunaliella. Concentration factors for 65Zn were uniformly higher than 137Cs concentration factors.