Primordial Black Hole Formation during First-Order Phase Transitions
Preprint
- 21 January 1999
Abstract
Primordial black holes (PBHs) may form in the early universe when pre-existing adiabatic density fluctuations enter into the cosmological horizon and recollapse. It has been suggested that PBH formation may be facilitated when fluctuations enter into the horizon during a strongly first-order phase transition which proceeds in approximate equilibrium. We employ general-relativistic hydrodynamics numerical simulations in order to follow the collapse of density fluctuations during first-order phase transitions. We find that during late stages of the collapse fluctuations separate into two regimes, an inner part existing exclusively in the high-energy density phase with energy density $\epsilon_{\rm h}$, surrounded by an outer part which exists exclusively in the low-energy density phase with energy density $\epsilon_{\rm h}-L$, where $L$ is the latent heat of the transition. We confirm that the fluctuation density threshold $\delta\epsilon /\epsilon$ required for the formation of PBHs during first-order transitions decreases with increasing $L$ and falls below that for PBH formation during ordinary radiation dominated epochs. Our results imply that, in case PBHs form at all in the early universe, their mass spectrum is likely dominated by the approximate horizon masses during epochs when the universe undergoes phase transitions.
Keywords
All Related Versions
- Version 1, 1999-01-21, ArXiv
- Published version: Physical Review D, 59 (12), 124014.
This publication has 0 references indexed in Scilit: