Abstract
The purpose of this paper is to present two new theorems concerning the degrees of coinfinite recursively enumerable (r.e.) sets which have no maximal supersets Let the class of all such degrees be denoted by A. Martin in [2] conjectured that there was some equality or inequality involving a′ or a″ characterizing the degrees a in A. Martin himself proved ([2, Corollary 4.1]) that a′ = 0″ is sufficient for ar r.e. degree a to be in A, and Robinson [3] announced that a′ ≥ 0″ is necessary. In this paper we improve both of these theorems by a factor of the jump, i.e., we shall show that a″ = 0″ is sufficient for an r.e. degree a to be in A, and that a″ ≥ 0″ is necessary.

This publication has 2 references indexed in Scilit: