Abstract
The single-particle potential in nuclear matter is calculated microscopically for several Hamiltonians for densities ranging from 0.1 to 0.5 fm3. These Hamiltonians include nucleon-nucleon potentials fit to scattering data and three-nucleon potentials fit to the binding energies of few-body nuclei and saturation properties of nuclear matter. The single-particle potential is a key ingredient in Boltzmann-Uehling-Uhlenbeck simulations of heavy-ion collisions. Parametrizations of the density and momentum dependence of the single-particle potential that may be useful in such simulations are discussed and compared to phenomenological prescriptions currently in use.