Novel fluorescent phospholipids for assays of lipid mixing between membranes

Abstract
A series of fluorescent phospholipids has been synthesized, by a general and versatile procedure, with various fluorescent groups attached to the methyl-terminal half of one acyl chain in an otherwise normal phospholipid structure. Phospholipids labeled with (dialkylamino)coumarin moieties, and to a slightly lesser extent those labeled with a bimane group, exhibit a strong and stable blue fluorescence in phospholipid dispersions that is relatively insensitive to the physical state of the lipid phase. The fluorescence of these labeled phospholipids is efficiently quenched by resonance energy transfer to lipids labeled with a [[(dimethylamino)phenyl]azo]phenyl or a methyl(nitrobenzoxadiazolyl)amino group when these acceptors are incorporated into the same bilayer as the donor species. Acyl chain labeled phospholipid probes, both of whose chains are at least sixteen carbons in length, exchange extremely slowly between lipid vesicles (< 1% exchange/h). These properties allow various donor-acceptor combinations of probes to be employed in sensitive and reliable assays of lipid mixing accompanying membrane fusion. We demonstrate tht, in two particularly demanding applications (assays of the calcium-mediated coalescence of phosphatidylserine vesicles and of the proton-triggered coalescence of phosphatidylethanolamine vesicles), some combinations of acyl chain labeled probes offer substantial advantages over the commonly used N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine/N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine pair to monitor accurately the progress of lipid mixing between vesicles.

This publication has 34 references indexed in Scilit: