Numerical Study of Particle Deposition in Bends of a Circular Cross-Section-Laminar Flow Regime

Abstract
Particle deposition in a 90° bend has been studied numerically using a realistic three-dimensional developing flow field. In addition to the Stokes number as the impaction parameter, both the curvature ratio and the Dean number have been found to have considerable effects on the deposition efficiency. At a fixed Stokes number, the deposition efficiency increases with an increasing Dean number and a decreasing curvature ratio. The inlet velocity profile also influences the deposition efficiency. In the case of a parabolic velocity profile, the deposition efficiency is always higher than that of a uniform profile. These increases in deposition efficiency are due to the increase of secondary flow strength and the increased skewness of the axial velocity profile toward the outside of the bend.

This publication has 17 references indexed in Scilit: