Molecular cytogenetics of the equidae

Abstract
A (G + C)-rich density satellite DNA (ϱ = 1.713 gm/cc) has been purified from splenic DNA of Przewalski's horse, Equus przewalskii, by successive equilibrium density gradient centrifugations. The purified satellite, which may comprise as much as 29% of the total DNA, renatures rapidly; however, analyses of native, single-stranded, and reassociated molecules by analytical ultracentrifugation and melting properties suggests that some sequence heterogeniety exists in the 1.713 gm/cc satellite. Complementary RNA (cRNA) transcribed from the satellite DNA has been utilized for in situ hybridization studies with E. przewalskii metaphase chromosomes previously identified by quinacrine-banding. These studies establish that sequences complementary to the 1.713 g/cc satellite are greatly enriched in the centromeres of some, but not all, chromosomes. The differential distribution of satellite DNA sequences over heterochromatic regions allows discrimination of three classes of heterochromatin and serves to define three types of pericentromeric regions in the karyotype of this endangered equine species. Additionally, apparent polymorphism in concentrations of satellite DNA sequences between homologs in the same karyotype is noted.