Abstract
The effect of L-carnitine (0.5-2.0 mM) on the rates of alpha-decarboxylation of 1-14C-labeled branched-chain amino acids by gastrocnemius muscle and liver homogenates of fed rats was investigated. Carnitine increased the rate of alpha-decarboxylation of leucine (125%) and valine (28%) by muscle, but it was without effect on the oxidation of these amino acids by liver. Carnitine increased the rate of alpha-decarboxylation of alpha-ketoisocaproate by both tissues. This effect was more pronounced in muscle (130% increase) than in liver (41% increase). The activity of carnitine acyltransferase, with isovaleryl-CoA as a substrate, was 18 times higher in muscle mitochondria than in liver mitochondria. Both starvation and diabetes increased the rate of alpha-decarboxylation of leucine by muscle without having a remarkable effect on the concentration of carnitine or the activity of carnitine acyltransferase. We conclude that: a) carnitine stimulates decarboxylation of branched-chain amino acids by increasing the conversion of their ketoanalogues into carnitine esters, b) a greater carnitine acyltransferase activity in muscle than in liver may be responsible for the greater carnitine effect in muscle, c) carnitine does not appear responsible for the enhancement of leucine oxidation by muscle of starved and diabetic rats.