On the Wentzel-Brillouin-Kramers Approximate Solution of the Wave Equation
- 1 October 1930
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 36 (7) , 1154-1167
- https://doi.org/10.1103/physrev.36.1154
Abstract
A discussion of the Wentzel-Brillouin-Kramers method of obtaining an approximate solution of the wave equation is given from the point of view that it forms a link between the quantum theory of Bohr and the new quantum mechanics. This becomes clear when one compares the probability distributions (see Figs. 2 and 3) and calculates the mean values (see Table I). It is shown that for high quantum numbers these become the classical values. The method leads also, as shown by Zwaan, to quantization by the classical phase integrals with the use of half-integer quantum numbers. In the last section the method is applied to the charged shell atom model. It is shown that the condition of smooth joining of the wave function is practically equivalent to half-integer quantization of the sum of the inner and outer phase integrals. Of course there is no longer a sharp distinction between penetrating and non-penetrating orbits. The Landé formula for the doublet separations is derived. The value of (0), which occurs in the calculation of the hyperfine separations in states, is also given.
Keywords
This publication has 9 references indexed in Scilit:
- ber die magnetischen Momente der AtomkerneThe European Physical Journal A, 1930
- Atomic Physics and Related Subjects.: Communications to Nature.: The Nuclear Moment of LithiumNature, 1930
- The Distribution of Charge and Current in an Atom consisting of many Electrons obeying Dirac's equationsMathematical Proceedings of the Cambridge Philosophical Society, 1929
- Zur Quantelung des asymmetrischen Kreisels. IIThe European Physical Journal A, 1929
- The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and MethodsMathematical Proceedings of the Cambridge Philosophical Society, 1928
- Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der ElementeThe European Physical Journal A, 1928
- Wellenmechanik und halbzahlige QuantisierungThe European Physical Journal A, 1926
- Eine Verallgemeinerung der Quantenbedingungen f r die Zwecke der WellenmechanikThe European Physical Journal A, 1926
- Versuch zur modellmäßigen Deutung des Terms der scharfen NebenserienThe European Physical Journal A, 1921