Equivalence of the Mediation, Confounding and Suppression Effect
Top Cited Papers
- 1 January 2000
- journal article
- research article
- Published by Springer Nature in Prevention Science
- Vol. 1 (4) , 173-181
- https://doi.org/10.1023/a:1026595011371
Abstract
This paper describes the statistical similarities among mediation, confounding, and suppression. Each is quantified by measuring the change in the relationship between an independent and a dependent variable after adding a third variable to the analysis. Mediation and confounding are identical statistically and can be distinguished only on conceptual grounds. Methods to determine the confidence intervals for confounding and suppression effects are proposed based on methods developed for mediated effects. Although the statistical estimation of effects and standard errors is the same, there are important conceptual differences among the three types of effects.Keywords
This publication has 20 references indexed in Scilit:
- School-based substance abuse prevention: a review of the state of the art in curriculum, 1980–1990Health Education Research, 1992
- Statistical Principles in Experimental DesignJournal of Marketing Research, 1992
- Identifiability and Exchangeability for Direct and Indirect EffectsEpidemiology, 1992
- Statistical validation of intermediate endpoints for chronic diseasesStatistics in Medicine, 1992
- Causal Inference, Path Analysis, and Recursive Structural Equations ModelsSociological Methodology, 1988
- Some New Results on Indirect Effects and Their Standard Errors in Covariance Structure ModelsSociological Methodology, 1986
- The Use of Structural Equation Models in Interpreting Regression Equations Including Suppressor and Enhancer VariablesApplied Psychological Measurement, 1979
- Suppressor Variables and the Semipartial Correlation CoefficientEducational and Psychological Measurement, 1978
- A Revised Definition for Suppressor Variables: a Guide To Their Identification and InterpretationEducational and Psychological Measurement, 1974
- The Probability Function of the Product of Two Normally Distributed VariablesThe Annals of Mathematical Statistics, 1947