Use of Cloud Model Microphysics for Passive Microwave-Based Precipitation Retrieval: Significance of Consistency between Model and Measurement Manifolds
- 1 May 1998
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 55 (9) , 1644-1673
- https://doi.org/10.1175/1520-0469(1998)055<1644:uocmmf>2.0.co;2
Abstract
Precipitation estimation from passive microwave radiometry based on physically based profile retrieval algorithms must be aided by a microphysical generator providing structure information on the lower portions of the cloud, consistent with the upper-cloud structures that are sensed. One of the sources for this information is mesoscale model simulations involving explicit or parameterized microphysics. Such microphysical information can be then associated to brightness temperature signatures by using radiative transfer models, forming what are referred to as cloud–radiation databases. In this study cloud–radiation databases from three different storm simulations involving two different mesoscale models run at cloud scales are developed and analyzed. Each database relates a set of microphysical profile realizations describing the space–time properties of a given precipitating storm to multifrequency brightness temperatures associated to a measuring radiometer. In calculating the multifrequency sig... Abstract Precipitation estimation from passive microwave radiometry based on physically based profile retrieval algorithms must be aided by a microphysical generator providing structure information on the lower portions of the cloud, consistent with the upper-cloud structures that are sensed. One of the sources for this information is mesoscale model simulations involving explicit or parameterized microphysics. Such microphysical information can be then associated to brightness temperature signatures by using radiative transfer models, forming what are referred to as cloud–radiation databases. In this study cloud–radiation databases from three different storm simulations involving two different mesoscale models run at cloud scales are developed and analyzed. Each database relates a set of microphysical profile realizations describing the space–time properties of a given precipitating storm to multifrequency brightness temperatures associated to a measuring radiometer. In calculating the multifrequency sig...Keywords
This publication has 0 references indexed in Scilit: