Theory and application of specular path perturbation
- 1 October 2000
- journal article
- Published by Association for Computing Machinery (ACM) in ACM Transactions on Graphics
- Vol. 19 (4) , 246-278
- https://doi.org/10.1145/380666.380670
Abstract
In this paper we apply perturbation methods to the problem of computing specular reflections in curved surfaces. The key idea is to generate families of closely related optical paths by expanding a given path into a high-dimensional Taylor series. Our path perturbation method is based on closed-form expressions for linear and higher-order approximations of ray paths, which are derived using Fermat's Variation Principle and the Implicit Function Theorem (IFT). The perturbation formula presented here holds for general multiple-bounce reflection paths and provides a mathematical foundation for exploiting path coherence in ray tracing acceleration techniques and incremental rendering. To illustrate its use, we describe an algorithm for fast approximation of specular reflections on curved surfaces; the resulting images are highly accurate and nearly indistinguishable from ray traced images.Keywords
This publication has 11 references indexed in Scilit:
- Perturbation methods for interactive specular reflectionsIEEE Transactions on Visualization and Computer Graphics, 2000
- Image-Based Rendering for Non-Diffuse Synthetic ScenesPublished by Springer Nature ,1998
- Metropolis light transportPublished by Association for Computing Machinery (ACM) ,1997
- Generating exact ray-traced animation frames by reprojectionIEEE Computer Graphics and Applications, 1995
- Stereoscopic ray-tracingThe Visual Computer, 1993
- Illumination from curved reflectorsACM SIGGRAPH Computer Graphics, 1992
- Parameterized Ray-tracingACM SIGGRAPH Computer Graphics, 1989
- Two algorithms for taking advantage of temporal coherence in ray tracingThe Visual Computer, 1988
- Mathematics Applied to Deterministic Problems in the Natural SciencesPublished by Society for Industrial & Applied Mathematics (SIAM) ,1988
- Principles and applications of pencil tracingACM SIGGRAPH Computer Graphics, 1987