The utility of motion parallax information for the perception and control of heading.

Abstract
Two experiments in which participants were given control over the direction of computer-simulated self-motion were conducted. Environments were designed to evaluate the functionality of simple and multiple motion parallax as well as a separation ratio (sigma; indexing the separation of 2 objects in depth) for the perception and control of heading. Results provide a 1st indication of optimizing performance in the top end of the global optical flow velocity range available during human bipedal self-motion. The introduction of sigma, developed to explain performance improvements with decreasing distance to the target, was able to account for most of the performance differences among all simulated environments. The rate of change in horizontal optical separation between at least 2 discontinuities was identified as a likely candidate for the optical foundation of the perception and control of heading during target approach.

This publication has 0 references indexed in Scilit: