Abstract
Mapping of fault patterns is an important part of geophysical exploration. A computerized digital template analysis method is described which tests gravity maps for the effects of faults by comparing measured gravity data with calculated master curves. The interpreted gravity data are incorporated in a tectonic map using geological symbols and units, for ready use by the geologists.Tectonics can be investigated by gravity detailing if the smallest undulations on the Bouguer map are taken into consideration. Up to now, residual and derivative gravity maps have explained gravity effects by assuming spherical bodies which are almost unknown in geology. The method discussed here uses tectonic elements, such as fault‐blocks and dikes as a basis of interpretation instead of the spherical bodies of the conventional interpretation methods.Gravity data can be easily and relatively cheaply obtained in the early phases of exploration by area wide spot coverage following lines of easy access such as roads, etc. Seismic studies, by contrast, have the disadvantage of being executed along predetermined profile lines. Only after sufficient detailing do seismic profiles permit‐if at all ‐an areal mapping of faults. Thus a tectonic map is obtained only at the end of a geophysical survey instead of being available prior to the planning of costly seismic profiles. The use of gravimetric data and their interpretation by the suggested method provides tectonic detail maps in the early phases of geophysical studies.In addition, this article discusses a general geophysical interpretation method, using the investigation of faults by gravity as an example. Applications of this method for different gravity and magnetics problems as well as for combined interpretations are outlined. Detailed case histories will be published in later articles.