Abstract
GABA-modulin is a brain protein of MW 16,500 that down-regulates the high-affinity binding site for GABA which is located in crude synaptic membranes. This protein can be phosphorylated in vitro by the catalytic subunit of cAMP-dependent protein kinase and by a partially purified preparation of calmodulin-sensitive Ca2+-dependent protein kinase. The GABA-modulin sites that are phosphorylated by the 2 enzymes are different, as revealed by HPLC [high performance liquid chromatography] analysis of tryptic digests. The capacity of GABA-modulin to decrease the number of sites that bind [3H]muscimol was completely abolished by phosphorylation of this protein with the cAMP-dependent protein kinase but not with the CA2+-dependent enzyme. GABA-modulin present in crude synaptic membranes prepared from rat cortex also was shown to be phosphorylated by endogenous protein kinases activated by cAMP, Ca2+ and calmodulin and Ca2+ and phosphatidylserine. A potentially important role is suggested for protein kinase and GABA-modulin in the regulation of the number of GABA recognition sites.