Expression of X‐linked genes in androgenetic, gynogenetic, and normal mouse preimplantation embryos

Abstract
A quantitative RT-PCR approach has been used to examine the expression of a number of X-linked genes during preimplan-tation development of normal mouse embryos and in androgenetic and gynogenetic mouse embryos. The data reveal moderately reduced expression of the Prps1, Hprt, and Pdha1 mRNAs in androge-netic eight-cell and morula stage embryos, but not in androgenetic blastocysts. Pgk1 mRNA abundance was severely reduced in androgenones at the eight-cell and morula stages and remained reduced, but to a lesser degree, in androgenetic blastocysts. These data indicate that paternally inherited X chromosomes are at least partially repressed in androgenones, as they are in normal XX embryos, and that the degree of this repression is chromosome position-dependent or gene-dependent. Gynogenetic embryos expressed elevated amounts of some mRNAs at the morula and blas-tocyst stages, indicative of a delay in dosage compensation that may be chromosome position-dependent. The Xist RNA was expressed at a greater abundance in androgenones than in gynogenones at the eight-cell and morula stages, consistent with previous studies. Xist expression was observed in both and rogenones and gynogenones at the blas-tocyst stage. We conclude that the developmental arrest in early androgenones may be, in part, due to reduced expression of essential X-linked genes, particularly those near the X inactivation center, where as the developmental defects of gyno-genones and parthenogenones, by contrast, may be partially due to overexpression of X-linked genes in extraembryonic tissues, possibly those far-thest away from the X inactivation center.