Rapid lateral diffusion of the variant surface glycoprotein in the coat of Trypanosoma brucei

Abstract
The membrane form of the variant surface glycoprotein (mfVSG) is anchored in the plasma membrane of Trypanosoma brucei by a dimyristoylphosphatidylinositol residue connected via a glycan to the COOH-terminal amino acid. The glycoprotein molecules are tightly packed, forming a coat that is impenetrable to lytic serum components. Lateral diffusion of mfVSG was measured by the fluorescence recovery after photobleaching technique. mfVSG labeled on the cell surface with rhodamine-conjugated anti-VSG Fab fragments showed a diffusion coefficient of 1 X 10(-10) cm2/s at 37 degrees C and of 0.7 X 10(-10) cm2/s at 27 degrees C. About 80% of the molecules were mobile. Affinity-purified mfVSG molecules implanted into the plasma membrane of baby hamster kidney cells exhibited a similar mobility to that found in the trypanosome coat [D = (0.4-0.7) X 10(-10) cm2/s at 4 degrees C]. Phospholipid mobility in the plasma membrane of trypanosomes was characterized by a diffusion coefficient of 2.2 X 10(-9) cm2/s at 37 degrees C. It is concluded that mfVSG mobility in the surface coat of the parasite is rapid and comparable to that of other membrane-bound glycoproteins but slower than that of phospholipids.

This publication has 0 references indexed in Scilit: