Molecular ions in L1544. I. Kinematics
Preprint
- 3 September 2001
Abstract
We have mapped the dense dark core L1544 in H13CO+(1-0), DCO+(2-1), DCO+(3-2), N2H+(1-0), NTH+(3-2), N2D+(2-1), N2D+(3-2), C18O(1-0), and C17O(1-0) using the IRAM 30-m telescope. We have obtained supplementary observations of HC18O+(1-0), HC17O+(1-0), and D13CO+(2-1). Many of the observed maps show a general correlation with the distribution of dust continuum emission in contrast to C18O(1-0) and C17O(1-0) which give clear evidence for depletion of CO at positions close to the continuum peak. In particular N2D+(2-1) and (3-2) and to a lesser extent N2H+(1-0) appear to be excellent tracers of the dust continuum. We find that the tracers of high density gas (in particular N2D+) show a velocity gradient along the minor axis of the L1544 core and that there is evidence for larger linewidths close to the dust emission peak. We interpret this using the model of the L1544 proposed by Ciolek & Basu (2000) and by comparing the observed velocities with those expected on the basis of their model. The results show reasonable agreement between observations and model in that the velocity gradient along the minor axis and the line broadening toward the center of L1544 are predicted by the model. This is evidence in favour of the idea that amipolar diffusion across field lines is one of the basic processes leading to gravitational collapse. However, line widths are significantly narrower than observed and are better reproduced by the Myers & Zweibel (2001) model which considers the quasistatic vertical contraction of a layer due to dissipation of its Alfvenic turbulence, indicating the importance of this process for cores in the verge of forming a star.Keywords
All Related Versions
- Version 1, 2001-09-03, ArXiv
- Published version: The Astrophysical Journal, 565 (1), 331.
This publication has 0 references indexed in Scilit: