Retrieval of Ice Cloud Parameters Using a Microwave Imaging Radiometer

Abstract
Based on the radiative transfer theory, the microwave radiance emanating from ice clouds at arbitrary viewing angles is expressed as an analytic function of the cloud ice water path (IWP), the particle effective diameter (De), and the particle bulk density (ρi). Thus, for a given particle density, the earth-viewing measurements at two frequencies (e.g., 340 and 89 GHz) can provide an estimate of De and IWP for submillimeter-size particles. This physical retrieval is tested using data from the Millimeter-wave Imaging Radiometer (MIR). A comparison among MIR, radar, and infrared sensor measurements shows that the MIR frequencies are affected primarily by thick ice clouds such as cirrus anvil and convection. Over highly convective areas, the measurements from 89 to 220 GHz are nearly identical since the scattering by large ice particles aloft approaches the geometric optics limit, which is independent of wavelength. Under these conditions, only the lower MIR frequencies (89 and 150 GHz) are used to ... Abstract Based on the radiative transfer theory, the microwave radiance emanating from ice clouds at arbitrary viewing angles is expressed as an analytic function of the cloud ice water path (IWP), the particle effective diameter (De), and the particle bulk density (ρi). Thus, for a given particle density, the earth-viewing measurements at two frequencies (e.g., 340 and 89 GHz) can provide an estimate of De and IWP for submillimeter-size particles. This physical retrieval is tested using data from the Millimeter-wave Imaging Radiometer (MIR). A comparison among MIR, radar, and infrared sensor measurements shows that the MIR frequencies are affected primarily by thick ice clouds such as cirrus anvil and convection. Over highly convective areas, the measurements from 89 to 220 GHz are nearly identical since the scattering by large ice particles aloft approaches the geometric optics limit, which is independent of wavelength. Under these conditions, only the lower MIR frequencies (89 and 150 GHz) are used to ...

This publication has 0 references indexed in Scilit: