The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP
Top Cited Papers
- 12 February 2008
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 105 (6) , 2070-2075
- https://doi.org/10.1073/pnas.0709662105
Abstract
Lung cancers caused by activating mutations in the epidermal growth factor receptor (EGFR) are initially responsive to small molecule tyrosine kinase inhibitors (TKIs), but the efficacy of these agents is often limited because of the emergence of drug resistance conferred by a second mutation, T790M. Threonine 790 is the “gatekeeper” residue, an important determinant of inhibitor specificity in the ATP binding pocket. The T790M mutation has been thought to cause resistance by sterically blocking binding of TKIs such as gefitinib and erlotinib, but this explanation is difficult to reconcile with the fact that it remains sensitive to structurally similar irreversible inhibitors. Here, we show by using a direct binding assay that T790M mutants retain low-nanomolar affinity for gefitinib. Furthermore, we show that the T790M mutation activates WT EGFR and that introduction of the T790M mutation increases the ATP affinity of the oncogenic L858R mutant by more than an order of magnitude. The increased ATP affinity is the primary mechanism by which the T790M mutation confers drug resistance. Crystallographic analysis of the T790M mutant shows how it can adapt to accommodate tight binding of diverse inhibitors, including the irreversible inhibitor HKI-272, and also suggests a structural mechanism for catalytic activation. We conclude that the T790M mutation is a “generic” resistance mutation that will reduce the potency of any ATP-competitive kinase inhibitor and that irreversible inhibitors overcome this resistance simply through covalent binding, not as a result of an alternative binding mode.Keywords
This publication has 41 references indexed in Scilit:
- Structures of Lung Cancer-Derived EGFR Mutants and Inhibitor Complexes: Mechanism of Activation and Insights into Differential Inhibitor SensitivityCancer Cell, 2007
- A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenesCancer Cell, 2006
- An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor ReceptorPublished by Elsevier ,2006
- Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancersInternational Journal of Cancer, 2006
- Coot: model-building tools for molecular graphicsActa Crystallographica Section D-Biological Crystallography, 2004
- EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinibProceedings of the National Academy of Sciences, 2004
- EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib TherapyScience, 2004
- Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to GefitinibNew England Journal of Medicine, 2004
- Refinement of Macromolecular Structures by the Maximum-Likelihood MethodActa Crystallographica Section D-Biological Crystallography, 1997
- [20] Processing of X-ray diffraction data collected in oscillation modePublished by Elsevier ,1997