Water-stress tolerance and late-season organic solute accumulation in hybrid poplar

Abstract
Organic solute concentrations of five hybrid poplar cultivars were compared to determine the relationship between water-stress tolerance, tissue solute concentration, and growth rate under field conditions. In the expanding foliage of the faster growing Populus deltoides Bartr. × P. balsamifera L. (Jackii 4), the saturated osmotic potential and turgor loss point osmotic potential were 0.18 MPa and 0.47 MPa lower, respectively, than in the slower growing P. deltoides × P. balsamifera (Jackii 7). The expanding foliage of Jackii 4 had higher (ca. 50%) concentrations of organic solutes, attributable mainly to salicyl alcohol, salicin, sucrose, and an unidentified compound. The coupling of high productivity and stress tolerance in Jackii 4 suggests that these may be compatible rather than competing attributes. Water-stress studies on P. deltoides Bartr. × P. nigra L. (DN 22) under greenhouse conditions demonstrated that stressed trees accumulated 4 times the soluble sugar concentrations of well-watered trees, lowering the saturated osmotic potential by 0.55 MPa and turgor loss point osmotic potential by 1.0 MPa. Leaves were the primary site of osmotic adjustment to water stress and roots showed no adjustment. The use of repeated drying cycles in planting stock may aid survival of postplanting stress in species capable of osmotic adjustment. The relationship between stress tolerance and solute concentrations in the greenhouse water-stress study paralleled that of the field study.