Single-File Transport of Water Molecules through a Carbon Nanotube

Abstract
Recent molecular dynamics simulations of water transport through the interior channel of a carbon nanotube in contact with an aqueous reservoir showed that conduction occurred in bursts with collective water motion. A continuous-time random-walk model is used to describe concerted transport through channels densely filled with molecules in a single-file arrangement, as also found in zeolites, as well as ion channels and aquaporins in biological membranes. Theoretical predictions for different collective properties of the single-file transport agree with the simulation results.