Associations between meCP2 mutations, x‐chromosome inactivation, and phenotype
- 1 January 2002
- journal article
- review article
- Published by Wiley in Mental Retardation and Developmental Disabilities Research Reviews
- Vol. 8 (2) , 99-105
- https://doi.org/10.1002/mrdd.10026
Abstract
Rett syndrome is a neurodevelopmental disorder of early postnatal brain growth in girls. Patients show a normal neonatal period with subsequent developmental regression and a loss of acquired skills (communication and motor skills), deceleration of head growth, and development of typical hand stereotypies. Recent studies have shown that mutations in the X‐linked methyl CpG binding protein 2 gene (MeCP2) cause most typical cases of Rett syndrome. The MeCP2 gene encodes a protein that binds methylated cytosine residues of CpG dinucleotides and mediates, with histone deacetylases and transcriptional repressors, the transcription “silencing” of other genes. Girls with Rett syndrome exhibit mosaic expression for the MeCP2 defect at the cellular level, with most patients showing random X‐inactivation and approximately equal numbers of cells expressing the normal MeCP2 gene and the mutated MeCP2 gene. In rare cases, females with a MeCP2 mutation escape phenotypic expression of the disorder because of nonrandom X‐inactivation and the preferential inactivation of the mutated MeCP2 allele. Nonrandom patterns of X‐inactivation may also contribute to the clinical variability often seen in girls with Rett syndrome. The spectrum of clinical phenotype caused by MeCP2 mutations is wide, including milder “preserved speech” variants, the severe congenital Rett variant, and a subset of X‐linked recessive mental retardation in boys. Studies have shown that atypical and classical Rett syndrome can caused by the same MeCP2 mutations, indicating clinical phenotype is variable even among girls with the same MeCP2 mutation. The relationship between type of MeCP2 mutation, X‐inactivation status, and clinical phenotype of Rett syndrome is complex and likely involves other environmental and polygenic modifiers. MRDD Research Reviews 2002;8:99–105.Keywords
This publication has 46 references indexed in Scilit:
- MECP2 mutation in non-fatal, non-progressive encephalopathy in a maleJournal of Medical Genetics, 2001
- MECP2 mutations in Danish patients with Rett syndrome: High frequency of mutations but no consistent correlations with clinical severity or with the X chromosome inactivation patternEuropean Journal of Human Genetics, 2001
- Mutation spectrum in patients with Rett syndrome in the German population: Evidence of hot spot regionsHuman Mutation, 2001
- Mutations in the MECP2 gene in a cohort of girls with Rett syndromeJournal of Medical Genetics, 2000
- Preserved speech variant is allelic of classic Rett syndromeEuropean Journal of Human Genetics, 2000
- Mutation screening in Rett syndrome patientsJournal of Medical Genetics, 2000
- Chromosome mapping of Rett syndrome: a likely candidate region on the telomere of Xq.Journal of Medical Genetics, 1998
- Rett syndrome: A disorder affecting early brain growthAnnals of Neurology, 1997
- Rett syndromeCurrent Opinion in Neurology, 1995
- Rett variants: A suggested model for inclusion criteriaPediatric Neurology, 1994