Abstract
Anisotropic dry etching by a number of different techniques is widely employed in III–V compound semiconductor technology for pattern transfer, device isolation, mesa formation, grating fabrication and via hole etching. In this paper we review the different dry etching techniques, the plasma chemistries employed for III–V materials and electrical and optical changes to the near-surface of the etched sample. We give examples of the use of dry etching in fabrication of heterojunction bipolar transistors, field effect transistors and various types of semiconductor lasers. Particular attention is paid to the characteristics of Electron Cyclotron Resonance discharges operating at high ion densities (≥5×1011 cm −3) and low pressure (~1 mTorr) with low ion energies (≤15 eV ) which are ideally suited for dry etching of III–V semiconductors.

This publication has 0 references indexed in Scilit: