Thermally activated transformation of magnetization-reversal modes in ultrathin nanoparticles

Abstract
The influence of thermal fluctuations on magnetization-reversal processes in ultrathin magnetic particles is investigated on the basis of a numerical solution of the Landau-Lifshitz-Gilbert equations taking account the thermal-activation fluctuation field. It is shown that for nanoparticles there exists a region of magnetic and geometric parameters where a strong jump-like instability of the critical field for magnetization reversal arises. This instability is due to the thermally activated transformation of magnetization configurations far from the switching threshold. The thermal-instability mechanism described is important for particles of much larger sizes than for the single-mode Néel-Brown instability.